Over the next few decades, managers of hydraulic engineering structures (such as locks, pumping stations and storm-surge barriers) face a significant replacement and renovation task. Rijkswaterstaat is currently drawing up a national forecast. To create a future-proof water infrastructure, we need to answer two questions: What is the best way to intervene? When is the optimal moment? It is not only the technical and economic life cycle that counts, but the functional performance of the engineering structure as well. How do you determine that?
Rijkswaterstaat is working on a national forecast for the replacement and renovation of hydraulic engineering structures. To support this forecast, we applied the MFL-LIGHT assessment in a proof of concept for the ‘Meuse’ river system. The aim of this assessment was to estimate the end of the functional life span of the most critical functions within the system, in order to create a comparison with the estimated technical life span. The first step of the method consists of a situation outline of the structures and networks that they are a part of. The next step is to map the associated core tasks and functions for each object group (a group of the same types of engineering structure, e.g. ‘locks’). Then, based on expert knowledge, the sensitivity of these functions to ‘drivers’ is then looked at – future developments such as climate change, transport demand and changing policies.
In the method, an object group (= group of the same types of structure) for each function is given a sensitivity score per driver. A structure or sub-task can, therefore, have several sensitivities. The values of the sensitivity score (colour coded) are defined under Figure 2. This figure is an (abbreviated) illustration of how the method works. We have based the climate drivers on the upper limit of the Delta scenarios, the WARM2050 scenario. This scenario assumes more river supply in winter, less supply in summer, warmer summers and a limited increase in transport demand. Furthermore, we assume that the shipping class of the Juliana Canal will remain unchanged (it will remain a ‘Vb corridor’). The table for the Meuse was completed by regional experts working in water management and engineering structures.
In the case of the Meuse River, four critical object-group-function-driver combinations stand out (red and orange blocks). One of these is the combination: locks in shipping lane – facilitating shipping traffic – decrease in river discharge in summer. It has a sensitivity score of -3. After all, as river discharge decreases in summer, low water will occur more often, causing more frequent lock restrictions, which will result in longer waiting times for shipping.
The outcome of the MFL-LIGHT assessment provides insight into the most important functions that will be under pressure in the future due to (climate) change.
When interpreting the results from the MFL-LIGHT, it can sometimes be difficult to identify the functional relationship between different object groups. For example, a system requirement may be that the water level in a canal bank must be maintained within a certain range. Often, multiple structures (pump, lock or weir) contribute to maintaining that water level. Quantitative insight into this kind of cohesion within the water system is often absent.
When establishing the end of a functional life spanwith MFL-MEDIUM/HEAVY, defining the requirements or ambitions is a challenge. For example, what is the maximum permissible waiting time at locks? How much is an authority willing to invest in sticking to an ambition of no more than two days’ waiting time per year? Is the action perspective with a less stringent requirement of 10 days per year acceptable? The same question can be asked of pumps. What is the minimum required availability and reliability? And how does this relate to current performance? The current performance of structures is not always monitored.
Another challenge in determining the end of a functional life span is that simple relationships are not always available. Model calculations will have to be performed to show current performance and make forecasts about the future, and these can be time-consuming. Good model schematics, in which the coherence within the system is appropriately taken into account, are not always available. In addition, forecasts involve uncertainties. Calculating the vertices of the Delta scenarios helps to map a range for the end of functional life span. An estimate can also be made of accelerated sea level rise scenarios, such as those recently presented by the KNMI and IPCC. Focused and periodic measurement of the functional performance of the system is expected to lead to a better understanding that helps to reduce uncertainty.
The phased approach in the Functional Life Cycle Methodology has clear added value for water authorities when deciding on replacement and renovation tasks. MFL-LIGHT can be used immediately. However, not all the requisite information will be available for application of MFL-MEDIUM and MFL-HEAVY. Water authorities can contribute by collecting information on how the current structure is performing in relation to requirements and ambitions. The Hydraulic Civil Engineering Structures Knowledge Programme 2021-2024 helps to map the required (further) development of models to visualise future bottlenecks; how does the system perform under the future scenario (drivers) outlined? In view of the design life span of a large proportion of hydraulic engineering works, water authorities expect to have to make many investment decisions concerning replacement and renovation over the next few decades. These decisions are an important moment of choice; they provide an opportunity to consider desirable changes in the (multifunctional) infrastructure with a view to the future. Within the Hydraulic Engineering Works Knowledge Programme 2017-2020, Rijkswaterstaat and Deltares have developed a methodology that takes into account the decrease in (functional) performance over time and thus estimates the functional life span. This article outlines the method using the river ‘Meuse’ system as an example.
Nienke Kramer
(Deltares)
Joost Breedeveld
(Deltares)
Ida de Groot-Wallast
(Deltares)
Hans van Twuiver
(Rijkswaterstaat)
Evert Jan Hamerslag
(Rijkswaterstaat)
Weir and lock complex in the river Meuse at Grave
Summary
Deltares, 2018, Deltascenario’s voor de 21e eeuw century (revised 2017), H.A Wolters, G.J. van den Born, E. Dammers, S. Reinhard, 2018a, Deltares, Utrecht, https://media.deltares.nl/deltascenarios/Deltascenarios_actualisering2017_hoofdrapport.pdf
Kennisprogramma Natte Kunstwerken, 2020, Kennisprogramma Natte Kunstwerken, Handleiding Toolbox Functionele Levensduur, Joost Breedeveld, Nienke Kramer, Ida de Groot-Wallast, Deltares report, December 2020, 1200741-079-HYE-0001, 56 pag. https://www.nattekunstwerkenvandetoekomst.nl/producten/relatie-object-systeem/functionele-levensduur/item101
Rijkswaterstaat, Klimaat stresstest objecten HWS – Bezien vanuit het perspectief van Ruimtelijke Adaptatie, Hidde Boonstra, v1 final, 1 May 2020
Rijkswaterstaat, Regioanalyse Vervanging en Renovatie (VenR) Weurt-Heumen: analyse van de VenR-opgave voor de sluiscomplexen Weurt en Heumen van het Maas-Waalkanaal, Version 1.0, 2020
Nienke Kramer
(Deltares)
Joost Breedeveld
(Deltares)
Ida de Groot-Wallast
(Deltares)
Hans van Twuiver
(Rijkswaterstaat)
Evert Jan Hamerslag
(Rijkswaterstaat)